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The article presents a theory of gas vibrations in a closed pipe that makes it 
possible to calculate a finite amplitude in resonance vibrations. An axisym- 
metric case with a view to the compressibility and viscosity of the gas is ex- 
amined. 

Resonance vibrations of a gas column in pipes attracted and still attract the attention 
of researchers, partly because the nonsteady processes are the cause of intensified processes 
of heat and mass exchange [i]. 

Nonlinear vibrations in a pipe, with a harmonically moving piston at one end while the 
other end is firmly closed off, were the subject of numerous investigations, both in the USSR 
[2-4] and in other countries [5-10]; however, so far there is no theory that describes satis- 
factorily the properties of the phenomenon under examination. 

In solving the problem, the following difficulties arise: a) with exact resonance kL = 
the vibration amplitude of the first harmonic becomes unbounded [i0] which is physically 

senseless; b) the oscillations of pressure and speed are shifted in phase by ~/2. This would 
indicate that the piston does not carry out work, whereas in experiments [i0] thermoacoustic 
effects connected with heat transfer from the pipe to the environment were observed. This was 
observed even in vibrations at a frequency far from the resonance frequency. 

In the present work we attempt to eliminate these disparities, i.e., we attempt to arrive 
at an acoustic approximation taking into account the finiteness of the amplitude of the vibra- 
tions of the first harmonic and the existence of thermoacoustic effects. 

We examine the movement of a viscous compressible liquid with constant physical proper- 
ties in a long cylindrical pipe (R/L<< i). We introduce the small parameter ~ = U~/(~L) and 
represent the physical magnitudes in the form of an expansion into a power series of ~. The 
solution of the equations in the first approximation with high-frequency vibrations RC~m/2v>>l 

has the form 
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where the number in the subscript denotes the corresponding approximation. We point out that 
expressions (i) differ from [!0] firstly by the fact that in all equations it was taken that 
R~-/-~>> I, and in view of the closeness of Pr to unity R ~P~/2~>> i; secondly, the third ex- 
pression is written taking into account that at the wall vl ~ O. 

For determining the constants A and B in [i0], the following conditions were used: 

u l ( x =  O, r =  O):= colexp(imt), U l ( X =  L, r = O) = O. (2 )  

In order to simplify the analysis, we put 

A = ICI exp (i~), B = - -  IC--L exp ( - -  i~), 
2 2 
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where I I indicates that we take the absolute value. Then we obtain 

p~= ICIcos(kx+=)exp(icot), Ul= - -  s i n ( k x + = )  1 - -  e x p ( - - ( 1  + i) | / ~ - ~  (R - - r ) )  exp(i~t) .  (4 )  
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We assume that a is a complex magnitude, i.e., a = So + iB, and we take into account that 
in the process of propagation the wave undergoes absorption. This may be done if it is as- 
sumed that the wave number is also complex, i.e., we adopt [ii] k = ko(l + in). Furthermore, 
we write the first of the conditions (2) in the form 

ul (x = O, r = O) = col (cos ~ + i sin ~) exp (i~t), (5)  

and  t h e  s e c o n d  c o n d i t i o n  r e m a i n s  w i t h o u t  c h a n g e .  Then  f o r  d e t e r m i n i n g  t h e  f i v e  u n k n o w n s  I c l ,  
~, ~,  a o ,  and ~, we obtain the following system of four equations: 

col cos tp = ICt . cos % sh [~, col sin qo = - -  IC~] sin % ch ~, 
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o~o + koL = O, fJ + ko~L = O. 

With (6) taken into account, expression (4) assumes the form 

Pl = ICI Cos [k o (x - -  L) + i~ ( 1 - -  x/L)] exp (io~t), 

(6)  
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We can obtain the lacking condition on the basis of the following consideration: The 
amount of energy averaged over time, supplied by the piston to the pipe, has to be equal to 
the amount of heat transmitted through the pipe walls to the environment. 

The work of the piston can be easily calculated: We average the product of pressure by 
speed on the piston and integrate over the cross-sectional area of the pipe 

WI = ~R ~ < p~(x = O).u~(x = O, r = O) > ,  ( 8 )  

where < > denotes averaging in time. Expression (8) takes into account the fact that with 
R/w/2~>> i the flow rate may be considered to be equal to the speed in the core of the flow. 

It is easy to show that if two complex functions ~ and P change in time harmonically, 
their product averaged in time can be calculated by the ratio 

< ~ .  W ) ~-- m (m) n* (~) + m* (~) n (~) , (9 )  
4 

where m(a), n(a) are the complex amplitudes of the functions ~ and ~, the asterisk denotes 
that the complex conjugate value is taken. 
we obtain 

With a view to (9) and after some transformations 
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To determine the heat fluxes due to thermoacoustic effects, we examine the equation of 
the second approximation for the temperature field [I0]: 
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with the boundary conditions 

OT2 
Or 

--0, r = 0 ;  To.=0,  r=R. ( 1 2 )  

Since the magnitudes of second order contain a part averaged in time and a part pulsating 
with double frequency [I], and in our case the averaged part is of interest, we average Eq. 
(ii) in time and obtain 

/ 
\ 

term < ~Ta/~t > would be nonzero. We multiply (13) by r and integrate from 0 to R. 
with a view to the boundary conditions and after a number of transformations we find 
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In this last expression it is taken that the process is already steady, otherwise the 
Then, 
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If we substitute the expressions u~, T~, and v~ from (i) into (14) and carry out the necessary 

calculations, we obtain for the local heat flux 

< q > = poC~[C'[ 2 V2-~'~ 2 (1 - -  l / R )  -i 1 x 
I -t- Pr ] , ' / ~  
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where lCI = ]C[/(poc~). 

The heat losses from the entire surface of the pipe are found by integration of the ex- 

pression over the lateral surface of the pipe: 

r e 2 -  : =RL oOolel 2 s: 2ko___L + H 
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where  D ---- 2 (1- -V 'Pr r )  _}_ •  1; H - -  1-}- •  1 
1 4-, Pr F / Pr ~ / P r  

Taking into account that WI + Wa = O, we may obtain for determining B that 

(2[~R/6 -- HkoL) sh 2~ = [~D sin 2koL, 

where 8 = 2~/m, and in view of relation (6); 

(17) 

koL l 
ICI = Fcosik0L shi~ q- sin2ko L ch~ -~. (18) 

For6+0, coshS+l, sinh~§ we have ICI k~ - -  , i.e., we obtain a result similar to [I0], 
sin ko L 

which is correct only for frequencies far from resonance. The most important consequence 
of the suggested theory is that the result is bounded even with exact resonance: [C] = kol/ 
sinh6. 
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Resonance curve of 
the dependence of the vibra- 
tion amplitude on the fre- 
quency (curve: theory; dots: 
experimental data of [i0]). 

Figure 1 shows the resonance curve according to expressions (17), (18) and the correspond- 
ing experimental points from [i0] for L = 1.7 m, ~ = 0.0138 m, R = 0.0095 m. The results agree 
well with each other. 

An important characteristic of the process of wave propagation with finite amplitude is 
the spatial attenuation factor [12] which can be easily obtained from the fourth of Eqs. (6) 
if it is taken into account that --ko~ = ~. Puttingsinh2S~2S for small ~, we have from (17): 

= ~--- = (6/4RL) (D sin 2ko L + 2HkoL ). (19) 
L 

Calculations by (19) show that ~ turns out to be 2-3 times smaller than was found by experi- 
ments carried out with sawtooth waves [12], but the change of ~ over the frequency coincides 
qualitatively. 

We also want to point out that with increasing vibration amplitude, the contribution of 
the terms of higher orders to the thermoacoustic effects increases. In our work we took into 
account only terms of second order. An evaluation shows that even in exact resonance the con- 
tribution of terms of fourth order does not exceed 30%. If such an accuracy suffices, then 
the simplicity of the obtained expressions justifies neglecting terms of higher orders. Tak- 
ing these terms into account if the vibration amplitude has to be determined more accurately 
does not present any fundamental difficulties on the basis of the suggested method. 

NOTATION 

k, wave number; L, length of the pipe; R, radius of the pipe; e, small parameter; U~, 
maximum amplitude of speed pulsations; ~, cyclic vibration frequency; ~, kinematic viscosity; 
p, pressure; p, density of the gas; T, gas temperature; u, v, axial and radial speed compo- 
nents, respectively; z = Cp/CV, ratio of specific heats; x, r, axial and radial coordinates, 
respectively; Pr, Prandtl humber; A, B, and C, ~, complex constants determined by the boundary 
conditions; co, speed of sound in the unperturbed medium; po, density of the unperturbed me- 
dium; l, piston stroke; ~o, B, real and imaginary parts of ~, respectively; ko, real part of 
the wave number; n, coefficient taking absorption into account; ~, angle; WI, work of the pis- 
ton; W=, heat losses; r ~, complex functions with amplitudes m(~) and n(~), respectively; ~, 
coefficient of dynamic viscosity; 6, thickness of the acoustic boundary layer; D, H, coeffi- 
cients depending on • and Pr, respectively; ~, spatial attenuation factor. 
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The article examines nonsteady heat and mass transfer in the process of drying by 
reduced pressure, on the assumption that the moisture is situated on the surface 
of an infinite plate. 

Drying by reduced pressure may be effected in various regimes: linear reduction of mois- 
ture content, linear reduction of temperatures, or constant rate of reducing pressure. The 
most favorable regime is linear reduction of moisture content which makes it possible to carry 
out the process of moisture removal at optimum speed. In this case the moisture content has 
to change according to the regularity 

U = U ~ - - N ~ .  (1) 

The drying rate is determined on the basis of the technological requirements that the 
product has to fulfill. The drying rate depends on the heat flux supplied for evaporating 
the liquid [i]: 

N = qf . (2) 
rmd .m. 

If we neglect the change of evaporation heat, of the heat-exchange surface, and of the weight 
of dry substance in the drying process, then the constant value of the drying rate is deter- 
mined by the constant value of the heat flux. In the process of realizing this regime of dry- 
ing by reduced pressure, evaporation of moisture is effected by liberation of the internal en- 
ergy of the moist material [2]. 

If there is considerable thermal resistance or if the particles are large, the evapora- 
tion process of the moisture will to a certain extent be affected by the inhomogeneity of the 
temperature field inside the particles. Finding the temperature field is connected with the 
solution of the differential equation of heat conduction. For an infinite plate, on condition 
that the moisture is only on the surface, the equation is as follows: 

OT (x; T) 02T(x; ~) 
= a (3) 
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